Upload to Canvas a PDF of your work for the following problems.
Make up an example of a binary linear code with 16 code words that isn’t perfect. List the 16 code words, and give a generating matrix. (Use your package functions.)
Prove that a \(k\)-fold repetition code is perfect if and only if \(k\) is odd.
Consider the binary linear code generated by the following matrix. \[ B = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \]
Here’s an \(8 \times 8\) Hadamard matrix: \[ B = \begin{bmatrix} 1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 \\ 1 & 1 & -1 & -1 & -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 & -1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & -1 & 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \]