Pseudocode and English: It is clear what it’s doing and why it works:
solve(n):
If n=1,
flip(1)
If n=2
flip(2)
flip(1)
else (when n>2)
solve(n-2) on the rightmost n-2 bits
flip(n), the nth bit << legal, b/c there are n-2 0's at the end >>
solve(n-2) in reverse on the rightmost n-2 bits << makes Puzzle look like 0111...111 >>
solve(n-1) on rightmost (n-1) bits
Psuedocode only. It’s correct, but it doesn’t communicate as well:
B(int n){
if(n == 0){
print nothing
}
else if (n==1){
print 1
}
else {
B(n-2)
print n
B(n-2), but printed backwards
B(n-1)
}
}
The recurrence relation should match the algorithm:
solve(n):
If n=1,
flip(1)
If n=2
flip(2)
flip(1)
else (when n>2)
solve(n-2) on the rightmost n-2 bits
flip(n), the nth bit << legal, b/c there are n-2 0's at the end >>
solve(n-2) in reverse on the rightmost n-2 bits << makes Puzzle look like 0111...111 >>
solve(n-1) on rightmost (n-1) bits
M(n)={1if n=1.2if n=2.2M(n−2)+M(n−1)+1if n>2.
If the algorithm is different, the recurrence is different.
B(int n){
if(n == 0){
print nothing
}
else if (n==1){
print 1
}
else {
B(n-2)
print n
B(n-2), but printed backwards
B(n-1)
}
}
M(n)={0if n=0.1if n=1.2M(n−2)+M(n−1)+1if n>2.
At least two options:
2n+1/3−1/2−(−1)n/6 or
M(n)=⌈2⋅2n−13⌉ The former is easier; the latter requires cases in the induction argument.
Base case: M(1)=1=223−12−(−1)16 and M(2)=2=233−12−(−1)26.
Suppose as inductive hypothesis that M(k)=2k+13−1/2−(−1)k6 for all k<n.
(When in doubt, always use strong induction.)
M(n)=2M(n−2)+M(n−1)+1=2(2n−13−12−(−1)n−26)+(2n3−12−(−1)n−16)+1=2n3−1−2(−1)n−26+2n3−12−(−1)n−16+1=2n3+2n3−1+1−12−2(−1)n−26−(−1)n−16=2n+13−12+2(−1)n−16−(−1)n−16=2n+13−12+(−1)n−16=2n+13−12−(−1)n6
Your only task is to simplify the original problem, or to solve it directly when simplification is either unnecessary or impossible; the Recursion Fairy will solve all the simpler subproblems for you, using Methods That Are None Of Your Business…
Consider the usual Towers of Hanoi puzzle (pp. 24ff) with n disks and 3 pegs, numbered 0, 1, and 2. Now suppose you are forbidden to move any disk directly between peg 1 and peg 2; every move must involve peg 0.
Describe a recursive algorithm to solve this puzzle.
Explain why (prove that) your algorithm never moves a disk between peg 1 and peg 2. (Use a strong induction hypothesis.)
Table #1 | Table #2 | Table #3 | Table #4 | Table #5 | Table #6 |
---|---|---|---|---|---|
Jack | Bri | Graham | Blake | James | Ethan |
Nathan | Grace | Logan | Levi | Drake | John |
Josiah | Kristen | Claire | Andrew | Timothy | Talia |
Kevin | Isaac | Jordan | Trevor |
Merge(A[1..n], m): MergeSort(A[1..n]):
i <- 1; j <- m + 1 if n > 1
for k <- 1 to n m <- floor(n/2)
if j > n MergeSort(A[1..m])
B[k] <- A[i]; i <- i + 1 MergeSort(A[(m+1)]..m)
else if i > m Merge(A[1..n],m)
B[k] <- A[ j]; j <- j + 1
else if A[i] < A[j]
B[k] <- A[i]; i <- i + 1
else
B[k] <- A[j]; j <- j + 1
for k <- 1 to n
A[k] <- B[k]
Merge(A[1..n], m): # O(n) comparisons MergeSort(A[1..n]): # C(n) comparisons
i <- 1; j <- m + 1 if n > 1
for k <- 1 to n m <- floor(n/2)
if j > n MergeSort(A[1..m]) # C(n/2) comparisons (approx)
B[k] <- A[i]; i <- i + 1 MergeSort(A[(m+1)]..m) # C(n/2) comparisons (approx)
else if i > m Merge(A[1..n],m) # O(n) comparisons
B[k] <- A[ j]; j <- j + 1
else if A[i] < A[j]
B[k] <- A[i]; i <- i + 1
else
B[k] <- A[j]; j <- j + 1
for k <- 1 to n
A[k] <- B[k]
C(n)={0if n=12C(n/2)+O(n)if n>1
C(n)={0if n=12C(n/2)+O(n)if n>1
As a tree, we can model C(n) as:
O(n)
/ \
C(n/2) C(n/2)
Expanding recursively, we get the following recursion tree:
n
/ \
n/2 n/2
/ \ / \
n/4 n/4 n/4 n/4
/ \ / \ / \ / \
n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8
... and so on
C(n)={0if n=12C(n/2)+O(n)if n>1
Total up each level in the recursion tree:
level total
n n
/ \
n/2 n/2 n
/ \ / \
n/4 n/4 n/4 n/4 n
/ \ / \ / \ / \
n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8 n
... and so on
There are logn levels in this tree, so C(n)∈O(nlogn).
(More to come.)